

Rozpływ prądów zwarciowych w przewodach odgromowych wielotorowych, wielonapięciowych linii napowietrznych

Agnieszka Dziendziel | PSE Innowacje | Politechnika Śląska

Henryk Kocot | Politechnika Śląska

www.pse.pl

Politechnika Śląska

Wprowadzenie

Poprawny dobór przekroju przewodów odgromowych

Dane

Ι.

Cel

Moce zwarciowe na krańcach linii, prądy zwarcia jednofazowego w miejscu zwarcia i udziały prądów płynących do tego miejsca, parametry geometryczne linii

Metodyka

- Superpozycja prądów indukowanych w przewodzie odgromowym od prądów płynących przewodami fazowymi oraz prądu galwanicznego dopływającego do miejsca zwarcia
- II. Zastosowanie modelu linii wraz z przewodami odgromowymi i wyznaczenie metodą rozpływową prądów zwarcia oraz jego rozpływu w przewodach odgromowych -

Wprowadzenie

Dobór przekroju przewodów odgromowych

Obecne podejście

Założenie o symetrii impedancyjnej linii napowietrznej

SYMETRYCZNA

Ten sam prąd zwarcia jednofazowego bez względu na zwartą fazę

Prądy płynące w poszczególnych fazach przy zwarciu trójfazowym są takie same

NIESYMETRYCZNA

Różne prądy zwarcia w zależności od zwartej fazy

Prądy płynące w poszczególnych fazach przy zwarciu trójfazowym **NIE** są takie same

Dobór przekroju przewodów odgromowych

Obecne podejście

Założenie: przyjęcie do obliczeń przewodu fazowego najbardziej oddalonego od przewodu odgromowego

Dobór przekroju przewodów odgromowych

Czy obecne podejście jest słuszne w przypadku WWLN?

 Linie charakteryzują się zróżnicowanym stopniem niesymetrii geometrycznej

olskie Sieci

ktroenergetyczne

- Zwielokrotnione oddziaływania wynikające z większej liczby torów prądowych
- Coraz częściej: wielonapięciowość

Pełny model do wyznaczania prądów w przewodach odgromowych

Model i scenariusze analiz

Wyniki analiz

Wpływ czynników geometrycznych na rozpływ prądów w przewodach odgromowych

<i>I_{po},</i> kA	k _z , -	<i>a</i> = 400 m			<i>a</i> = 300 m			$I_{\rm poA}$
		h _{fz} , m			h _{fz} , m			$J'' = k \cdot J''$
		30	40,5	51	30	40,5	51	$\Gamma_{klA} = \kappa_z \Gamma_{kl}$
I _{poA}	0,5	13,10	12,92	12,53	13,46	13,26	12,86	$I_{k1B}^{"} = I_{k1}^{"} (1 - k_z)$
I _{роВ}		6,55	6,75	7,18	6,28	6,50	6,94	
I _{poA}	0,7	14,10	14,06	13,95	14,47	14,41	14,29	
I _{роВ}		5,46	5,51	5,62	5,19	5,26	5,37	
I _{poA}	0,75	14,36	14,35	14,32	14,73	14,70	14,65	
I _{роВ}		5,20	5,21	5,23	4,92	4,95	5,00	
I _{poA}	0,8	14,62	14,63	14,67	14,99	15,00	15,01	
I _{poB}		4,92	4,90	4,85	4,65	4,64	4,63	
I _{poA}	0,9	15,13	15,22	15,41	15,50	15,58	15,75	
I _{poB}		3,38	4,28	4,08	4,11	4,02	3,85	

a – długość przęsła; k_z – różnicuje prąd zwarcia dopływający od strony stacji A do słupa, na którym modeluje się zwarcie i zależy od mocy zwarciowych na obu końcach linii oraz od odległości miejsca zwarcia od poczatku linii: h_z – wysokość zawieszenia przewodu fazowego objętego zwarciem

Wyniki analiz

Elektroenergetyczne

Wpływ czynników geometrycznych na rozpływ prądów w przewodach odgromowych

Wyniki analiz

Elektroenergetyczne

Wpływ wyboru fazy zwartej na prądy w przewodach odgromowych

Podsumowanie

- Wykonanie analizy rozpływu prądów zwarcia w przewodach odgromowych jest istotnym elementem w procesie ich doboru.
- Prądy w przewodach odgromowych zależą od wielu czynników i nie zawsze stosowane do tej pory modele ich obliczania są słuszne.*
- Największy wpływ na wyniki analiz ma wartość prądu zwarcia jednofazowego liczonego na kolejnych słupach linii oraz układ przewodów fazowych w poszczególnych torach WWLN przekładające się na różnice prądów płynących w poszczególnych przewodach podczas zwarcia.
- Niepewność wyników uzyskanych z modelu dokładnego zależy jedynie od dokładności danych geometrycznych linii oraz parametrów elektrycznych. Model nie zawiera dodatkowych założeń np. dot. współczynnika redukcyjnego.

→ Dalsze badania

- Wpływ sprzęgieł na końcach torów o jednakowych napięciach znamionowych na prądy w przewodach odgromowych.
- Uwzględnienie otoczenia sieciowego linii na rozpływ prądów w przewodach odgromowych.
- Wpływ zróżnicowania mocy zwarciowych węzłów sąsiadujących na rozpływ prądów w przewodach odgromowych.

Agnieszka Dziendziel | agnieszka.dziendziel@pse.pl | PSE Innowacje sp. z o.o. agnieszka.dziendziel@polsl.pl | Politechnika Śląska

Henryk Kocot | henryk.kocot@polsl.pl | Politechnika Śląska

IV Konferencja Linie i stacje elektroenergetyczne | Wisła | 25-26 października 2023 r.

Politechnika Śląska